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A B S T R A C T

We describe a model-data fusion (MDF) inter-comparison project (REFLEX), which compared various

algorithms for estimating carbon (C) model parameters consistent with both measured carbon fluxes and

states and a simple C model. Participants were provided with the model and with both synthetic net

ecosystem exchange (NEE) of CO2 and leaf area index (LAI) data, generated from the model with added noise,

and observed NEE and LAI data from two eddy covariance sites. Participants endeavoured to estimate model

parameters and states consistent with the model for all cases over the two years for which data were

provided, and generate predictions for one additional year without observations. Nine participants

contributed results using Metropolis algorithms, Kalman filters and a genetic algorithm. For the synthetic

data case, parameter estimates compared well with the true values. The results of the analyses indicated that

parameters linked directly to gross primary production (GPP) and ecosystem respiration, such as those

related to foliage allocation and turnover, or temperature sensitivity of heterotrophic respiration, were best

constrained and characterised. Poorly estimated parameters were those related to the allocation to and

turnover of fine root/wood pools. Estimates of confidence intervals varied among algorithms, but several

algorithms successfully located the true values of annual fluxes from synthetic experiments within

relatively narrow 90% confidence intervals, achieving>80% success rate and mean NEE confidence intervals

<110 gC m�2 year�1 for the synthetic case. Annual C flux estimates generated by participants generally

agreed with gap-filling approaches using half-hourly data. The estimation of ecosystem respiration and GPP

through MDF agreed well with outputs from partitioning studies using half-hourly data. Confidence limits

on annual NEE increased by an average of 88% in the prediction year compared to the previous year, when

data were available. Confidence intervals on annual NEE increased by 30% when observed data were used

instead of synthetic data, reflecting and quantifying the addition of model error. Finally, our analyses

indicated that incorporating additional constraints, using data on C pools (wood, soil and fine roots) would

help to reduce uncertainties for model parameters poorly served by eddy covariance data.

� 2009 Elsevier B.V. All rights reserved.
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1. Introduction

The land surface modelling community is increasingly seeking
to test its terrestrial ecosystem models against the growing array of
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observations (Bonan, 2008). Such model-data comparison provides
an opportunity to highlight areas in space or time of poor process
representation, and to guide model improvement. A critical dataset
to be used in evaluating ecosystem models is that of eddy
covariance (EC) data (Baldocchi et al., 2001), which are collected
from hundreds of sites worldwide, some over more than a decade.
However, these data are associated with uncertainties and
complications (Lasslop et al., 2008; Richardson et al., 2008). EC
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towers measure net ecosystem exchanges (NEE) of CO2, meaning
that the underlying processes of photosynthesis (GPP) and
ecosystem respiration (Re) that are represented in models are
not directly measured during daytime (Desai et al., 2008).

A meaningful comparison between model and data is compli-
cated by the need to assess and account for both model and
observational errors. Thus, the probability of a model being correct
should be assessed by taking into account observational uncer-
tainties. Model uncertainty is also an important factor in any
comparison with data. Models may be uncertain because of how
they represent key processes, how initial conditions are set, or
because their parameters are poorly determined. Separating these
causes of uncertainty is important for guiding model development.

Model-data fusion (MDF) approaches, previously used mainly
in hydrology and weather forecasting, are now being used more
frequently by the terrestrial C cycle community (Raupach et al.,
2005). MDF combines models with observations, taking account of
model and observational uncertainties. In theory, MDF provides a
means to cope with the problems arising from incomplete and
noisy observational data, and uncertainty in model processes,
initial states and parameters. MDF combines models with
observations, and estimates of their uncertainties, to produce
estimates of system dynamics with confidence intervals (Williams
et al., 2005) and model parameterisations consistent with data. We
refer to these outputs of MDF schemes as ‘‘analyses’’ hereafter.

The capabilities and weaknesses of the various existing MDF
approaches remain poorly understood. One recent study, the OptIC
experiment, used pseudo-data from a highly simplified test model
with four parameters to compare parameter estimation methods
(Trudinger et al., 2007). OptIC found different methods equally
successful, but that the choice of the cost function (quantifying the
model-data mismatch) caused the most variation in the estimated
parameters. OptIC also demonstrated that the effort expended and
experience of the user was a factor in successful solutions.
However, OptIC did not use observed data of C fluxes, nor did it test
state estimation or model forecast capabilities. With observed
data, MDF is complicated by observational and model error and
bias.

Here we describe the REgional FLux Estimation eXperiment.
REFLEX is a model-data fusion inter-comparison project, aimed at
comparing the strengths and weaknesses of various MDF algo-
rithms for estimating parameters, fluxes and states of a C model.
REFLEX participants used a mass balance C dynamics model that
links C fluxes to changes in C stocks. The model generates NEE
estimates based on its description of photosynthesis, autotrophic
and heterotrophic respiration, all generated as functions of C
stocks. These predictions were fused with either observed or
synthetic daily NEE data. Unlike OptIC, real data were used in
REFLEX, and the model employed is able to simulate GPP and Re,
and thus predict NEE, for direct comparison with eddy covariance
data. The key question addressed here is: what are the confidence
intervals on model parameters calibrated from EC data, and on
model analyses and predictions of net C exchange and carbon
stocks over multiple years? The experiment has an explicit focus
on how different algorithms and protocols quantify the confidence
Table 1
Experimental summary for REFLEX. The table shows for each experiment the input data, t

generated parameter estimates and estimates of model states (fluxes and pools of C), wh

deciduous vegetation; EV – evergreen vegetation; SYN – synthetic data; EC – observed

Experiment Data Drivers Sites

1 FLUXNET NEE and LAI data,

2000–2001

Observed, 2000–2001 DE-EC, E

2 Artificial/synthetic Artificial DE-SYN,

3 None Observed, 2002 DE-EC, E

4 None Artificial DE-SYN,
intervals on parameter and state estimates, given the same C
budget model and datasets.

What is novel in REFLEX is an explicit focus on comparing how
an ensemble of MDF algorithms perform in terms of estimating C
model states and parameters, and the uncertainties on these
quantities. By using a single common model and both synthetic
and observed EC datasets, and diagnostic and prognostic tests, we
are able to generate insights into current capabilities for assessing
and forecasting ecosystem NEE using model-data fusion.

2. Methods

In REFLEX, participants first used synthetic data and their choice
of MDF algorithm to retrieve parameters and states consistent with a
specified C model. Synthetic data were generated from the specified
C model with a certain parametrization, with noise and gaps added
to model outputs. The synthetic experiment dealt with observa-
tional and algorithmic error, and also user error including
assumptions related to initial conditions and parameter priors.
There was no model error or driver error. REFLEX participants then
went on to fuse data from EC systems and local measurements of leaf
area index (LAI) with the C model. This exercise introduced model
and, to a lesser extent, driver error, because the model used does not
perfectly describe forest ecosystem C fluxes, and because meteor-
ological observations may contain small errors. Finally, REFLEX
participants used the C model in a prognostic, rather than diagnostic,
mode. One year of daily driver data was provided to produce
forecasts of C dynamics, using parameters generated in the
diagnoses, and the forecasts were tested against withheld data,
both synthetic and observed (Table 1).

2.1. Model description

The requirements for the REFLEX C model included simplicity, a C
mass balance, and vegetation and soil C pools with time constants
covering days to decades. The model outputs had to include daily
NEE and LAI. We selected the Data Assimilation Linked Ecosystem
Carbon (DALEC) model (Williams et al., 2005), originally designed for
evergreen forests, and a modified version (DALEC-D) for deciduous
forests (Fig. 1). DALEC is a simple box model of carbon pools
connected via fluxes running at a daily time-step. For the evergreen
model there are five C pools representing foliage (Cf), woody stems
and coarse roots (Cw), and fine roots (Cr) along with fresh leaf and fine
root litter (Clit) and soil organic matter and coarse woody debris
(Csom). In the deciduous model there is an additional labile pool (Clab)
of stored C to support leaf flushing. The following assumptions were
made to determine the fluxes between the C pools:

1. All C fixed during a day is expended either in autotrophic
respiration or else allocated to one of the three plant tissue
pools, Cf, Cw or Cr.

2. Autotrophic respiration is a constant fraction of the C fixed
during a day (Waring et al., 1998).

3. Allocation fractions to vegetation pools are donor-controlled
functions which have constant rate parameters.
he source of the meteorological drivers, and the site codes. The first two experiments

ile the final two experiments were forecasts of model states only. Acronyms: DE –

eddy covariance and LAI data.

Parameters States

V-EC Generated by MDF, with 90% CI Generated by MDF with 90% CI

EV-SYN Generated by MDF, with 90% CI Generated by MDF with 90% CI

V-EC From experiment 1 Generated by MDF with 90% CI

EV-SYN From experiment 2 Generated by MDF with 90% CI



Fig. 1. A schematic of the DALEC (black) and DALEC-deciduous (black and grey) models. The figures show pools (boxes) and fluxes (arrows) of C. Feed-back between DALEC and the

model of gross primary production, ACM, is indicated by dotted line. Allocation fluxes are A, litter-fall fluxes are L, and respiration is R, split between autotrophic (a) and

heterotrophic (h). D is decomposition and GPP is gross primary productivity. C stocks: Clab = labile; Cf = foliage; Cr = fine roots; Cw = wood; Clit = litter; CSOM = soil organic matter.

Allocation: Atolab = to labile pool; Afromlab = from labile pool, Af = to foliage; Ar = to fine roots; Aw = to wood. Litterfall: Lf = from foliage; Lr = from fine roots; Lw = from wood.

Table 2
Time series data available provided to users in the experiments for all sites.

Observation Units Interval Source

Global radiation MJ m�2 day�1 Daily FLUXNET data portal

Minimum temperature 8C Daily FLUXNET data portal

Maximum temperature 8C Daily FLUXNET data portal

Atmospheric CO2

concentration

mmol mol�1 Daily FLUXNET data portal

NEE gC m�2 day�1 Daily FLUXNET data portal

LAI m2 m�2 When

available

References/site PI
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4. For the deciduous model, the timing of initial leaf out is
controlled by a simple growing degree day accumulation, and
leaf fall by a minimum temperature threshold. The maximum
amount of C that can be allocated to leaves is also limited by a
parameter (Cfmax)

5. All C losses are via mineralisation (i.e. no dissolved losses).

The aggregated canopy model (ACM) (Williams et al., 1997) is
used to calculate daily GPP in DALEC. ACM is a ‘big leaf’, daily time-
step model that estimates GPP using a simple aggregated set of
equations operating on cumulative or average values of leaf area
index (LAI, determined directly from Cf, total foliar C), foliar
nitrogen, total daily irradiance, minimum and maximum daily
temperature, day length, atmospheric CO2 concentration, water
potential gradient (cd) and total soil–plant hydraulic resistance
(rtot). ACM contains 10 parameters (Table 4) which have been
calibrated using a fine-scale model (the soil–plant–atmosphere
model (SPA), (Williams et al., 1996) across a wide range of driving
variables producing a ‘universal’ parameter set which maintains
the essential behaviour of the fine-scale model but at a much
reduced complexity.

2.2. Selection of parameters for optimisation

Across most carbon dynamics models (Sitch et al., 2008) a
similar photosynthesis scheme is applied (Farquhar and von
Caemmerer, 1982), the same as that used in SPA. There is strong
consensus that this photosynthesis model is appropriate given
current knowledge, and for this reason the REFLEX study optimised
only one of the photosynthesis parameters used in DALEC. Rather,
REFLEX focussed on optimising the parameters that determine
how photosynthate is allocated, turned over and mineralised.
These processes, and thus their parameters, remain uncertain, and
yet are key determinants of NEE. For instance, the suggestion that
the ratio of net primary production to GPP is constant (Waring
et al., 1998) remains contested (Zhang et al., 2009), so there is
uncertainty in the parameterisation of autotrophic respiration, to
which NEE is highly sensitive (Williams et al., 2005). Phenological
models for timing of leaf out and leaf senescence remain highly
empirical but critical determinants of C balance (Van Wijk et al.,
2003). Existing models for the allocation of photosynthate to wood
and fine roots, and turnover of soil organic matter and fine roots
use varying assumptions and parameters (Davidson and Janssens,
2006; Dewar et al., 2009), and generate different NEE estimates as a
result (Sitch et al., 2008). For these reasons, the optimisation is
directed at parameters determining the fate of fixed carbon,
including the variation in leaf area in time, which is itself a critical
determinant of photosynthesis.

The sole ACM parameter included in the optimisation is the
nitrogen use efficiency parameter (a1), which determines the
maximum rate of carboxylation per g foliar N. For the purposes of
this experiment the sites were treated as being non-drought
stressed. Those variables related to drought effects in ACM,
specifically cd and rtot, were given a fixed value in accordance with
this assumption. Although only one ACM parameter is directly
optimised, LAI dynamics create a strong feedback between DALEC
and ACM (and thus GPP), which a number of parameters influence
through allocation and turnover rates.

2.3. Datasets

Four datasets (two synthetic and two based on actual
measurements) were provided to participants. Each dataset
included a variety of information (Table 2), including continuous
daily meteorological drivers, intermittent NEE and LAI data.
Estimates of the initial values of the pools of soil organic matter
and wood, and site data on leaf mass per area, for calculating LAI in
the GPP model, were provided (Table 3). Initial conditions for foliar,
fine root, litter and labile C were not provided, nor were expected
ranges. No other information was provided.



Table 3
Site details, including latitude, initial conditions for large C pools, and foliage parameters, all provided to users.

Site Latitude

(8N)

Soil organic matter

C (gC m�2)

Above-ground

biomass (gC m�2)

Leaf mass per area

(gC m�2 leaf area)

Foliar N

(g N m�2 leaf area)

EV-EC (Loobos) 52 11000 9200 110 4.0

EV-SYN 50 9700 12400 110 3.8

DE-EC (Hesse) 48 7100 8800 22 1.0

DE-SYN 51 9900 8900 22 1.1
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Synthetic datasets were generated for three years for an
evergreen (EV-SYN) and deciduous (DE-SYN) forest, using DALEC
and DALEC-D model runs, with nominal parameters and meteor-
ological driver data selected from European EC flux tower sites
(Viesalm, Belgium and Braaschaat, Belgium). Gaps were intro-
duced into the synthetic NEE and LAI data time series by thinning
the model outputs to match the data availability from the real data
discussed below. The synthetic NEE data were first thinned to
match the days for which daily NEE could potentially be
determined when using a strict criteria of >43 of a possible 48
half-hour NEE observations passing quality control for the
FLUXNET sites which were used to provide meteorological drivers
(�40% of total time period). This coverage was found to be greater
than that determined for the other FLUXNET sites used in the real
data experiments (discussed below), and so to aid comparison
these data were further thinned by removing days at random to
reduce coverage to �30%. Similarly, synthetic LAI data were only
provided on days which mirrored the patterns of actual data
availability at the real data experiments.

Noise was added to the remaining model outputs to reflect
measurement error, by adding Gaussian errors with a variance of
0.5 g C m�2 day�1 for the NEE and 10% of the truth for the LAI
(participants were not provided with these details). Though the
half-hourly measurements may have non-Gaussian errors, the
noise on the sum/mean becomes Gaussian with aggregation at
longer time scales. Participants were provided with the first two
years of synthetic observations.

For the observed data, the sites (Loobos, Netherlands and Hesse,
France) and site-years (2000–2002) were selected on the basis of
relatively long, continuous records of fluxes and site meteorology,
quality controlled data, and little or no drought stress. The
observed data included measurements of eddy covariance (EC)
fluxes, LAI, and local meteorology from a deciduous broad-leaf
forest (identified as DE-EC = Hesse) and an evergreen needle-leaf
forest (EV-EC = Loobos). Daily NEE was calculated by summing
half-hourly observations, but only if >43 of the possible 48
observations passed quality control. Missing data were filled by the
daily mean of remaining data. It is possible that some small bias
was introduced by this simple gap-filling, but for the purposes of
this study such impacts were deemed insignificant. Typical data
coverage was 20–30% of days. LAI data were sparse, usually
collected on just a few days. Gap-filled flux data were not used in
this experiment, but complete daily meteorological data were
required to drive the model, and so gap-filled weather data were
used. All data were obtained via the FLUXNET site (www.fluxne-
t.ornl.gov), from relevant, site-specific literature and/or from site
PIs. Three sequential years of data were assembled, of which the
first two years were provided to participants. The source of the EC
data, and any estimated uncertainties were withheld from
participants.

2.4. Experiments

All participants used DALEC and DALEC-D, the same models
used to generate the synthetic data. The use of common reference
models allowed direct comparison among MDF algorithms. Upper
and lower bounds for the parameters of both deciduous and
evergreen versions of the model were provided (Table 4). These
bounds were set broad to ensure a high likelihood that reasonable
parameters were located in the EC experiments. The ranges for
turnover rates were set to give mean residence times of at least 10
days for leaves, labile C and litter and 100 days for other pools, and
at most 27 years for foliage, labile C and roots, 270 years for litter
and 2700 years for SOM and wood. The fraction of GPP respiration
autotrophically is often set at �0.5 (Waring et al., 1998), but other
values have been reported so we set a range from 0.2 to 0.7. For
allocation to foliage and roots we allowed these parameters to vary
from very small values to a maximum of 0.5 each, so that total
allocation to roots and leaves �1. The temperature response
parameter (Et) bounds were set to keep Q10 between 1.65 and 7.4,
spanning the commonly found values between 2 and 3 (Davidson
and Janssens, 2006). The GPP scalar (Pr) was set to allow
approximate doubling or halving of the expected value (�10).
The range of the Lout and Lfall parameters were set to span the
expected f months of leaf out in temperate climates (March–May)
and for the start of leaf abscission (September–November).
Maximum foliar C (Cfmax) was set within a range to give LAI of
�5–25 for broadleaves and �1–5 for needles, with this variability
resulting from the differences in leaf mass per area for the different
plant functional types. For fraction of leaf loss transferred to litter
(Fll), we set a range that resulted in 20–70% of foliar C being stored
in the labile pool to prime growth in the following season.

Participants applied the MDF algorithm of their choice to four
experiments (Table 1). The first two experiments were diagnostic,
testing parameter and state estimation using two years of
incomplete daily NEE and LAI data, at both an evergreen and
deciduous site. These data were either real, collected at a FLUXNET
site (experiment 1) or artificial, synthesised from model output
with added noise (experiment 2). The final two experiments were
prognostic, testing forecast capability, again at the real sites
(experiment 3) and the artificial sites (experiment 4). Forecasts of
daily C fluxes and pool dynamics were generated using parameter
distributions from the first two experiments, forced by a single
extra year of meteorological data. The flux/stock data, both
observed and synthetic, for this third year were withheld for later
assessment.

2.5. Algorithms

A wide range of different MDF algorithms are currently
applied (e.g. Raupach et al., 2005), but because REFLEX was an
open inter-comparison experiment the algorithms employed
were not selected according to any criteria, rather they were
dependent upon the community interest and experience
(Table 5). Many of the methods used Monte Carlo approaches
based on the Metropolis–Hastings algorithm or variants thereof.
There were differences in the implementation, with various cost
functions, uncertainty specifications and convergence tests
employed. The cost function weights the difference between
observations and simulated quantities, often using observation
error estimates, and sometimes model error estimates. There
was also a genetic algorithm approach, and an Ensemble Kalman
Filter (EnKF). In two cases a Metropolis approach was
supplemented by a Kalman filter (one Unscented KF, one EnKF).

http://www.fluxnet.ornl.gov/
http://www.fluxnet.ornl.gov/


Table 4
Model parameters for DALEC. p1–17 and a1 require calibration. NPP2 is NPP remaining after allocation to foliage.

Description Code Nominal value or range (low/high)

p1 Decomposition rate (per day) Td 1 � 10�6/0.01

p2 Fraction of GPP respired autotrophically Fg 0.2/0.7

p3 Fraction of NPP allocated to foliage Fnf 0.01/0.5

p4 Fraction of NPP2 allocated to roots Fnrr 0.01/0.5

p5 Turnover rate of foliage (per day) Tf 1 � 10�4/0.1

p6 Turnover rate of wood (per day) Tw 1 � 10�6/0.01

p7 Turnover rate of roots (per day) Tr 1 � 10�4/0.01

p8 Mineralisation rate of litter (per day) Tl 1 � 10�5/0.1

p9 Mineralisation rate of SOM/CWD (per day) Ts 1 � 10�6/0.01

p10 Parameter in exponential term of temperature dependent rate parameter Et 0.05/0.2

p11 Nitrogen use efficiency parameter (a1) in ACM Pr 5/20

p12* GDD value causing leaf out Lout 200/400

p13* Minimum daily temperature causing leaf fall Lfall 8/15

p14* Fraction of C in leaf loss transferred to litter Fll 0.2/0.7

p15* Turnover rate of labile carbon (per day) Tlab 1 � 10�4/0.1

p16* Fraction of labile transfers respired Flr 0.01/0.5

p17* Maximum Cf value (gC m�2) Cfmax 100/500

a1 Nitrogen use efficiency of GPP 5/20

a2 Daylength coefficient 0.0156

a3 Canopy CO2 compensation point 4.22

a4 Canopy CO2 half saturation point 208.9

a5 Daylength constant 0.0453

a6 Hydraulic coefficient 0.378

a7 Maximum canopy quantum yield 7.19

a8 Temperature coefficient 0.011

a9 LAI-canopy quantum yield coefficient 2.10

a10 Water potential constant 0.79

* Parameters p12–17 are used in DALEC-deciduous only. a1–10 are parameters for the GPP model ACM used in DALEC.
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All the algorithms (bar the free-standing EnKF) used �105

iterations to produce the full set of parameter and state
estimates. Most of the algorithms assumed that prior parameter
distributions were uniform across the range supplied. The use of
a uniform prior suggests that the researcher has a prior belief
that all setting of parameters within the range are equally likely.
The users made a variety of assumptions about initial conditions
for some state variables (Table 5) and more detailed are
provided in the Appendix A.

For the Metropolis methods, confidence intervals on fluxes
were generated as a function of the set of acceptable parameter
sets. These parameters sets were fed into the model to produce a
set of possible outcomes, that were then sampled to determine the
90% CI. Differences in the size of the CI depend on the accept/reject
criterion employed by each algorithm in generating acceptable
parameter sets (Table 5). The methods employing the Kalman filter
employed a further step, once acceptable parameter sets were
determined. The state variables of the model, including flux
estimates, were updated using sequential assimilation of observa-
tions through the times series.

2.6. Analyses

Because of the multiple datasets and algorithms employed, a
series of metrics were required to most simply describe the
outcomes of the parameter estimation exercises. To quantify
and summarise the different approaches, we computed for each
parameter two (for EC data) or three (for SYN data) relative-
distance metrics, d1–d3. Here, for a given parameter, mx is
algorithm x’s best estimate of the parameter; CIx is the width of
the parameter’s confidence interval for algorithm x; t is the true
value of the parameter; pmax and pmin are the pre-specified
upper and lower limits on the parameter (Table 4); s is a
standard deviation and m is a mean:

d1: Consistency among algorithms

: sðm1; . . . ;m9Þ=ð pmax � pminÞ
This metric tests whether all algorithms retrieve a similar signal
from the observations. It does not indicate whether the retrieved
parameter is ‘‘correct’’, but quantifies the ability of algorithms to
find a consistent part of the parameter space and identify minima.

d2: CI constrained by the data : mðCI1; . . . ;CI9Þ=ð pmax � pminÞ

This metric tests to what degree the posterior estimate of the
parameter is an improvement on the prior estimate. The size of d2

will depend on the prior estimate range, and so this metric has a
subjective component.

d3: Consistent with truth ðSYN onlyÞ

: jt �mðm1; . . . ;m9Þj=ð pmax � pminÞ

This metric actually determines whether the retrieved para-
meter is consistent with the truth, which is known for the SYN case.

We determined two further metrics to aid a comparison among
algorithms of parameter estimation capabilities, for the SYN cases
only. Mean normalised parameter confidence interval (d4) is
similar to the d2 statistic but rates individual algorithm’s mean 90%
confidence intervals across all parameters, normalised by the size
of the parameter priors:

d4:
Xn

i¼1

CIi

pmax i � pmin i

 !
=n

where CIi is the width of the algorithm’s 90% confidence interval for
parameter x; n is the number of parameters (11 for EV, 17 for DE),
pmax i and pmin i are the pre-specified upper and lower limits on
each parameter prior.

The metric for consistency with true parameter value (d5) is
similar to the d3 statistic, but again rates consistency for an
individual algorithm across all parameters:

d5: t �
Xn

i¼1

mi

pmax i � pmin i

 !
=n

where mx is parameter x’s best estimate by the algorithm and n is
the number of parameters. The closer d5 is to zero, the better.



Table 5
A summary of the algorithms used in the experiment. Methods using Metropolis algorithm alone are labelled Mx. U1 and E1 used a Kalman filter after an initial Metropolis algorithm search for parameters. G1 and E2 are the only

methods not using the Metropolis algorithm in the some manner. G1 did not generate confidence intervals for GPP and Re.

Participant Name – type of methodology Code Prior Cost/objective function Initial pools Convergence

tests

Number of

parameter sets

produced

Number of

model

iterations

Programming

language

E1 (stage 1) Uniform Weighted root mean

square error

Parameters to be

estimated

Gelman and

Rubin (1992)

�400000 �1000000 Fortran

E1 (stage 2) MCMC Metropolis, then EnKF Evensen (2003) PDFs from stage 1 Kalman gain PDFs from stage 1 n/a State only 8000 Fortran

E2 Ensemble Kalman Filter Evensen (2003) Gaussian Kalman gain Included in calibration n/a �2000 800 Fortran

U1 Unscented Kalman Filter Gove and Hollinger

(2006)

Gaussian Minimize posterior

error covariance via

the Kalman gain.

As estimated by M3 n/a State only n/a R

G1 Genetic algorithm Based on Haupt and

Haupt (2004)

Uniform Based on Haupt and

Haupt (2004)

Tuned with parameters n/a �100000 Fortran

M1 MCMC – Metropolis Gaussian likelihood Included in calibration visual 300000 Fortran

M2 MCMC – Metropolis MCMC1 Uniform Weighted root mean

square error

Parameters to be

estimated

Visual comparison

of parameter PDFs

from 2 chains

1000000 1000000 Fortran

M3 Simulated annealing –

Metropolis

SAM Uniform Weighted root mean

square error

Parameters to be

estimated

n/a 1000 �250000 Fortran

M4 MCMC – Metropolis MCMC3 Uniform Weighted root mean

square error

Spinup to equilibrium

of total C

Heidelberger and

Welch (1983)

80000 �300000 R

M5 Multiple complex

MCMC – Metropolis

SCEM Uniform Weighted root mean

square error

Parameters to be

estimated

Gelman and

Rubin (1992)
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Table 6
Parameter estimation metrics using nine different algorithms based on synthetic

data for evergreen (left) and deciduous (right) forest. Metric d1 quantifies

consistency among methods; d2 quantifies the data constraint on the confidence

intervals; and d3 quantifies the consistency with the truth.

Evergreen: EV-SYN Deciduous: DE-SYN

Param d1 d2 d3 d1 d2 d3

Td 0.26 0.36 0.75 0.26 0.42 0.72

Fg 0.30 0.41 0.02 0.11 0.42 0.09

Fnf 0.07 0.49 0.00 0.26 0.53 0.37

Fnrr 0.24 0.65 0.31 0.19 0.60 0.07

Tf 0.06 0.20 0.03 0.05 0.16 0.01

Tw 0.22 0.40 0.69 0.27 0.37 0.22

Tr 0.27 0.52 0.03 0.04 0.28 0.02

Tl 0.07 0.22 0.03 0.03 0.15 0.03

Ts 0.05 0.16 0.21 0.04 0.08 0.01

Et 0.04 0.24 0.00 0.05 0.17 0.04

Pr 0.21 0.47 0.15 0.14 0.46 0.06

Lout 0.22 0.40 0.19

Lfall 0.14 0.25 0.10

Fll 0.13 0.52 0.24

Tlab 0.19 0.54 0.01

Flr 0.18 0.33 0.00

Cfmax 0.22 0.36 0.17

Mean 0.16 0.38 0.20 0.15 0.36 0.14
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3. Results

3.1. Parameter estimation

Each algorithm produced sets of parameter estimates for each
dataset in experiments 1 and 2, describing a multi-dimensional
probability density volume. Because of their high dimensionality,
these hyper-volumes are not easily described or visualised, so a
range of metrics and methods are used. Firstly, we determined the
‘‘best’’ parameter set estimate of each algorithm (Fig. 2), based on
the minimum of the cost function (e.g. Metropolis algorithm) or
the mean value of an ensemble (Ensemble Kalman Filter). The best
estimates were supplemented by estimates of the 90% confidence
intervals (CIs) on each parameter. These CIs were calculated on the
basis of the 5.0 and 95.0 percentiles of the accepted parameter
distributions submitted by participants.

For the SYN datasets only, it was possible to gauge how
effectively the algorithms retrieved the true parameter values
using d3 (Table 4). The analysis reveals (Table 6, Fig. 2 and
Appendix A) that turnover rate parameters for soil (Ts), foliage (Tf)
and litter (Tl) as well as the temperature rate parameter (Et) and the
NPP:GPP ratio (Fg) were well estimated overall, across the range of
methods for deciduous and evergreen ecosystems. By comparison,
the turnover rate parameters for wood (Tw) and decomposition
(Td), tended to be poorly estimated overall. The allocation to foliage
parameter (Fnf) was well estimated for EV-SYN but biased in DE-
SYN. Of those parameters used only in the deciduous model,
allocation to litter (Fll) and turnover of labile C (Tlab) were poorly
estimated, whereas the labile transfer respiration fraction (Flr) was
more successfully estimated. The estimates of the phenology
parameters Lout and Lfall were of intermediate quality.

For the SYN datasets, the d2 metric indicated that several of the
turnover rate parameters were well constrained compared to their
priors (i.e. Tf, Tl and Ts) with narrow confidence intervals (Table 6).
The d1 metric indicates that these same parameters were
consistently estimated among algorithms. Conversely, some para-
meters were poorly constrained, e.g. Fnf, with little reduction in
spread from the initial upper and lower bounds (d2 metric), although
in this case, as already noted, the best estimate values were close to
the truth for the EV-SYN case. The d1 metric revealed that several
parameter estimates were not consistent among algorithms,
including maximum leaf area parameter (Cfmax) in DE-SYN.
Fig. 2. Parameter estimation for deciduous synthetic (DE-SYN) data. The panels shows eac

confidence intervals. The ‘true’ value of the parameter used in generating the synthetic da

as provided to the experimenters, is indicated by the range of each x-axis. x-Axes are log sc

symbols see Table 5.
A critical parameter controlling C accumulation is Fg (Williams
et al., 2005), which determines what fraction of GPP is respired by
plants. While in both SYN cases the d3 metrics indicated reasonable
consistency with the truth, the d2 metrics indicated relatively poor
constraint on parameter confidence intervals by the data and the d1

metrics indicated a degree of inconsistency among algorithms. The
d1 and d2 metrics were similarly above average for the allocation
parameters to foliage (Fnf) and roots (Fnrr), indicating relatively poor
agreement among algorithms and limited constraint on priors.

For the EC datasets the ‘true’ parameter value is not known so it is
only possible to comment on the levels of parameter constraint and
consistency between algorithms (Table 7 and Appendix A) and make
comparison with the SYN cases. Again the d2 metric indicates that
most of the turnover rate parameters (i.e. Tf, Tl and Ts) and the
temperature response of respiration (Et) were well constrained. But
in general there was more variability between algorithms in the CIs
than in the SYN cases. Consistency between algorithms, although in
no way a measure of how good the algorithms are at identifying the
h of the algorithms’ best estimate of each parameter, and the magnitude of each 90%

ta is indicated by the d vertical line. The upper and lower bounds of each parameter,

aled for turnover rates (all parameters beginning T). For an explanation of parameter



Table 7
Parameter estimation metrics using nine different algorithms based on observed data

for evergreen (left) and deciduous (right) forest. Metric d1 quantifies consistency

among methods; d2 quantifies the data constraint on the confidence intervals.

Evergreen EV-EC Deciduous DE-EC

d1 d2 d1 d2

Td 0.28 0.42 0.29 0.36

Fg 0.11 0.36 0.08 0.3

Fnf 0.16 0.31 0.2 0.55

Fnrr 0.29 0.6 0.15 0.53

Tf 0.08 0.19 0.12 0.25

Tw 0.24 0.35 0.21 0.35

Tr 0.29 0.35 0.32 0.2

Tl 0.09 0.23 0.08 0.18

Ts 0.08 0.1 0.05 0.2

Et 0.02 0.2 0.09 0.19

Pr 0.14 0.52 0.17 0.35

Lout 0.21 0.37

Lfall 0.2 0.32

Fll 0.16 0.32

Tlab 0.1 0.49

Flr 0.12 0.23

Cfmax 0.03 0.25

Mean 0.16 0.33 0.15 0.32
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correct values, is an indication of which parameters the algorithms
find most identifiable given the observations and model structure.
For EV-EC greatest consistency is shown for Et whilst for DE-EC it is
the deciduous model only parameter, maximum foliar C, Cfmax. For a
number of parameters (i.e. Td and Lfall) the algorithms seem to split
Fig. 3. A comparison of two metrics of parameter calibration success against mean param

success is judged in two ways: (1) by the fraction of 90% confidence intervals encompassin

are better; (2) by the mean normalised difference between best estimate and true parame

better. Individual algorithms are identified by alphanumerics (Table 5). The top two pane

synthetic data. Data for the synthetic experiments are shown, where true values of th
their best estimate values into two groupings. This result indicates
different minima were found by the different algorithms and
potential problems with equifinality through parameter covariance.

Comparing the SYN and EV results for parameter consistency
there was a significant correlation in the associated metric (d1)
between EC and SYN for EV (r = 0.73, P = 0.01) but not DE (r = 0.31,
P = 0.24). So the EV parameters that were consistently estimated
(across methods) were similar for synthetic and eddy covariance
data, while this was not so for DE datasets, perhaps because of the
greater number of parameters. There was a significant correlation
between EC and SYN d2 distances, measuring how well parameter
CIs were constrained by data, for both EV (r = 0.87, P = 0.0004) and
DE (r = 0.84, P < 0.0001). Thus parameters that were well
constrained (low d2) by the synthetic data were well constrained
by the eddy covariance data.

As expected, those algorithms with large parameter confidence
intervals encompassed a large fraction of true parameter values
within their 90% confidence intervals for the SYN cases (Fig. 3). For
the DE-SYN case, three algorithms (E1, E2, M1) managed to generate
relatively small and reliable confidence intervals. For the EV case,
none of the algorithms managed to balance small confidence
intervals with reliability. For the DE case, three algorithms (E1, E2,
M1) generated parameters that were most consistent with true
values and also had the smallest confidence intervals. For the EV case
there was no clear pattern among algorithms; although E2 had the
closest agreement with true parameters and the narrowest
confidence intervals, it had the smallest fraction of true parameters
within the 90% CI, suggesting over-confidence.
eter 90% confidence intervals of each algorithm (d4, see text). Parameter calibration

g the true parameter values obtained by each algorithm, see left panels—high values

ter values obtained by each algorithm (d5, see text), see right panels—low values are

ls are generated from the deciduous synthetic data, the bottom two from evergreen

e parameters are known.



Fig. 4. Estimated time series of net ecosystem exchange of CO2 (NEE) over three

years from each algorithm using observations from the DE-EC dataset over the first

two years (top panel) and 90% confidence intervals on the estimates (lower panel).

The eddy covariance data is shown as open symbols.
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3.2. Flux estimates—synthetic data

For the synthetic datasets daily NEE predictions were generally
close to the true values from which observations were generated.
RMSE values calculated against the true values ranged from 0.07 to
0.55 gC m�2 day�1, with a mean over all algorithms and years of
0.20 gC m�2 day�1. These error values compared well with the noise
added to the truth in order to generate synthetic observations and
can be compared with mean NEE true value of
�0.44 gC m�2 day�1.for EV-SYN and 0.01 gC m�2 day�1.for DE-
SYN. This would suggest that for the EV-SYN case the algorithms
are correctly able to identify the site as a carbon sink, but for the DE-
SYN site which is very near equilibrium they would necessarily be
able to attribute the small C source correctly. Partitioning synthetic
NEE into GPP and Re was generally successful compared to the
known true values, with mean RMSE values over all algorithms of
0.6 gC m�2 day�1 in both cases, which can be compared with GPP
and Re of 3.4 and 3.41 gC m�2 day�1 for DE-SYN and 2.26 and
1.82 gC m�2 day�1 for EV-SYN, respectively. There was no evidence
that best-fit or mean predictions of fluxes deteriorated in year 3, the
prognostic period during which data were not assimilated.

3.3. Parameter correlations

Model structure can generate correlations among parameters,
so in some cases the same model output can be generated using
different parameter values, i.e. equifinality (Richardson and
Hollinger, 2005; Schulz et al., 2001). So, we determined whether
the parameter estimates of the different algorithms were similarly
correlated. Parameter correlations indicate a potential weakness in
constraining the parameters concerned, and we expected that
correlated parameters would have broader confidence intervals as
a consequence. We compared the parameter correlation matrices
produced by each algorithm for each of the four datasets. From
each matrix we found the 5 highest absolute values, to simplify the
analysis. We then determined how many of these top five
correlations were in common among algorithms (n = 9) for each
dataset. The number of unique ranked correlations could vary from
5 (all algorithms in agreement) to 45 (no agreement). The observed
numbers varied from 21 to 24.

For the EV datasets, 8 out of 9 algorithms agreed on a high
ranking for a correlation between allocation to foliage and turnover
rate of foliage (Fnf and Tf). Also for the EV datasets, five algorithms
ranked highly a correlation between the fraction of GPP respired
and the photosynthetic rate parameter (Fg and Pr). 8 out of 9
algorithms rated this correlation highly for DE-SYN, but only two
algorithms for DE-EC. For both DE-EC and DE-SYN the algorithms
agreed on an important correlation between allocation to fine roots
and the turnover rate of SOM (Fnrr and Ts, identified by five
algorithms) and between turnover rate of foliage and trigger for
leaf fall (Tf and Lfall, identified by four algorithms).

An eigenvector analysis of the parameter covariance matrix
suggested that the best constrained parameter was the turnover
rate of SOM, Ts. The next best constrained parameter identified was
the temperature rate parameter, Et. Turnover rate of foliage was
well constrained for EV analyses. Allocation to and turnover of
roots were poorly constrained for EV analyses. The results for the
DE analyses were less clear, with differences between DE-EC and
DE-SYN. Turnover rate of wood and roots were least well
constrained in DE-SYN, while the GDD threshold for leaf out
and the turnover rate of labile C were least well constrained in DE-
EC. There was some variation in the eigenvectors from the different
algorithms with some parameters well constrained by some
algorithms, but not well constrained by others. Comparison with
the constraint metric d2 were largely, but not totally, consistent.
Eigenvector analysis did not identify any consistent correlation
features, apart from one between fraction of GPP respired (Fg) and
the NUE parameter, Pr, consistent with earlier analyses.

3.4. Flux confidence intervals—daily data

The seasonal patterns of variation in NEE were generally well
reproduced by most algorithms across all three years of each of the
different datasets (for example, Fig. 4). There was low agreement
among algorithms in the assessment of 90% confidence intervals
(CI) on daily fluxes (Fig. 4). There were differences in confidence
interval estimates both in magnitudes and in temporal variability
among algorithms. For instance, the mean daily 90% CI varied
among algorithms from 0.35 to 1.92 gC m�2 day�1 in DE-SYN and
0.29 to 2.49 gC m�2 day�1 in DE-EC. Algorithm confidence inter-
vals typically had large excursions during spring leaf-out for DE,
but the magnitude of these excursions varied (Fig. 4).

We tested whether the 90% CI on daily analyses (years 1 and 2)
and predictions (year 3) encompassed the truth from the synthetic
datasets for NEE, GPP and Re for all years, and for observed NEE in
year 3 for the EC datasets. The days of each year which passed this
test were counted. We expected that 85–95% of the days would
pass, roughly consistent with the magnitude of the confidence
interval, 90%. For the synthetic experiments (NEE tests are shown
in Table 8) this was rarely the case. In some cases the fraction was
100%, which indicates that the daily CI were likely set too large. In
other cases, the fractions were <85% suggesting that the CI were
too small or the predictions were biased. For the eddy covariance
datasets in year 3, the majority of algorithms’ confidence intervals
on daily NEE were too narrow, with an average of only 40% (DE) or
20% (EV) of the observed year 3 data lying within the 90%
confidence interval (Table 9). This result suggests the algorithm
generated over-confident assessments of daily fluxes.

3.5. Flux estimates—observed data

For the eddy covariance datasets, the algorithms’ predictions
were compared to observed NEE. In years 1 and 2, when observations
were provided to participants, RMSEs varied from 0.7 to
1.8 gC m�2 day�1 (DE) or 0.6 to 0.9 gC m�2 day�1 (EV), with a mean
value of 1.3 gC m�2 day�1 for DE datasets and 0.7 gC m�2 day�1 for
EV. In year 3, when observations were not provided to participants,
RMSEs varied from 1.1 to 2.3 gC m�2 day�1 (DE) or 1.3 to



Table 8
Fraction of days in each year where 90% confidence interval encompassed the

synthetic ‘‘true’’ value of NEE. Fractions are shown for each of the three individual

years for DE-SYN and EV-SYN datasets. Values between 0.85 and 0.95 are in bold

and are consistent with the 90% CI. Values of 1.0 are indicated by italics.

DE-Syn EV-Syn

Year 1 Year 2 Year 3 Year 1 Year 2 Year 3

Algorithm

M1 0.95 0.97 0.99 0.81 0.89 1.00

M2 0.73 0.65 0.81 0.95 0.61 0.51

M3 1.00 1.00 1.00 1.00 1.00 1.00

M4 0.95 0.97 0.96 0.80 0.86 0.85
M5 0.66 0.37 0.36 0.39 0.25 0.35

E1 0.90 0.83 0.95 0.93 0.77 0.69

E2 0.85 0.99 1.00 0.44 0.61 0.60

U1 0.99 0.99 1.00 0.99 0.98 1.00

G1 1.00 1.00 0.98 1.00 0.99 1.00
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1.7 gC m�2 day�1 (EV), with a mean value of 1.5 gC m�2 day�1 for
both EC and DE datasets (Table 9). Thus the best NEE estimates of the
algorithms tended to agree less well in the prognostic period (year 3)
compared to the assimilation period (years 1 and 2), though this was
most striking for the evergreen (EV) case in this study.

3.6. Flux confidence intervals—annual sums

A comparison of 90% confidence intervals on annual estimates of
NEE, GPP and Re for all years revealed differences of up to an order of
magnitude in size of CI (Fig. 6). There was no clear relationship
between size of CI and algorithm type – for instance, M1 and M2
tended to have small CI compared to M3 and M4, although all used
Metropolis algorithms. This result makes clear the importance of the
user in determining the confidence interval, rather than the
algorithm itself. The mean confidence interval for NEE
(124 gC m�2 year�1) was �3-fold smaller than those for GPP
(389 gC m�2 year�1) and Re (387 gC m�2 year�1). A comparison of
the mean 90% confidence intervals on annual NEE estimates (Table
10) indicated that CI were largest during year 3, the prediction period,
and smallest in year 2. Of the 36 cases,4 datasets, 9 algorithms, 34had
larger confidence intervals on year 1 than year 2, and 35 had larger CI
on year 3 than year 2, so this pattern was general across algorithms
Table 9
Assessment of year three best-fit predictions and 90% confidence intervals (CI) for

the EC datasets. Comparisons with both foliar carbon mass (Cf) and daily net

ecosystem exchange (NEE) are shown. Assessment of best-fit predictions is through

root mean square error (RMSE) on observations for year 3 for deciduous (DE) and

evergreen (EV) forests. Assessment of confidence intervals is through quantifying

the fraction of days in year 3 where the 90% confidence interval encompassed the

observed NEE. Values between 0.85-0.95 are in bold and are deemed consistent

with the 90% CI. Values of 0 indicated no observed data were within the CI, while a

fraction of 1 indicates all data were within the CI. Algorithms are identified by

codes. n is number of observations in year 3, which were withheld from the

experimental team.

Algorithm Foliar C mass (Cf) Daily NEE

RSME

(gC m�2)

CI frac RMSE

(gC m�2 day�1)

CI frac

DE-EC EV-EC DE-EC EV-EC DE-EC EV-EC DE-EC EV-EC

M1 12.3 29.9 1 0.5 1.42 1.50 0.14 0.14

M2 7.6 16.6 0 0.83 1.21 1.34 0.11 0.06

M3 6.9 19.4 1 0.94 1.35 1.42 0.56 0.16

M4 16.9 18.9 1 1 1.57 1.73 0.39 0.19

M5 10.6 17.8 0 0.17 2.25 1.37 0.2 0.16

E1 6.1 20.3 1 0.33 1.10 1.49 0.14 0.08

E2 30.2 37.8 1 1 1.70 1.45 0.86 0.16

U1 4.1 15.5 1 1 1.34 1.37 0.84 0.61

G1 4.2 22.6 1 0.83 1.24 1.54 0.43 0.16

n 1 18 1 18 218 171 218 171
and datasets. Averaged over all cases, the 90% CI in the prediction
period (year 3) were 88% larger than in the second year of the
assimilation period (year 2). Patterns were similar in comparison
between outputs from observed and synthetic datasets. However,
mean 90% CI across all algorithms were �31% larger for EC datasets
than for SYN datasets. Among algorithms, the increase in 90% CI on EC
datasets compared to SYN datasets ranged from 0% (E1) to 100% (E2).

3.7. Testing annual flux estimates and confidence intervals

Annual flux outputs estimated and forecast using the synthetic
datasets were compared with the synthetic truth. Each algorithm’s
annual output of NEE, GPP and Re was tested to determine whether
the truth lay within the 90% CI for estimates. The fraction of tests
that were successful was compared with the mean size of the 90%
confidence interval for each specific algorithm (Fig. 5). As expected
there was often a positive relationship between success rate and
confidence interval size, but some algorithms managed to contain
the truth within relatively narrow confidence intervals. In the
comparison for annual NEE, four algorithms (E1, E2, M1, M3)
produced analyses with >80% success rate and mean confidence
intervals <110 gC m�2 year�1. In the comparison against compo-
nent fluxes (GPP and Re), two algorithms (E2, M2) produced more
balanced analyses, with relatively high success rates (>65%) and
narrow confidence intervals (<300 gC m�2 year�1). M3 was always
100% successful in containing the truth within its 90% confidence
intervals, and this over-confidence was because associated CI were
the largest of all algorithms for GPP and Re. There were successful
tests for prognoses in year 3 by several algorithms, indicating that
predictions of C fluxes beyond the observational period were
successful also (Table 8).

3.8. GPP and Re estimates

The decomposition of observed NEE data into GPP and Re

revealed major differences among algorithms, with best estimates
varying by up to 900 gC m�2 year�1 (Fig. 6 and Appendix A).
However there were similar patterns among algorithms across
years. For instance, M4 tended to estimate lower magnitudes of
these fluxes than other algorithms. In most cases the algorithms
ranked the GPP and Re similarly across years at each site, but not
always. For instance, M1 and M5 ranked Re differently for DE-EC
across years (see Appendix A). Flux analyses were compared with
estimates from other gap-filling and GPP-Re decomposition
algorithms using data from the same sites (Desai et al., 2008). In
some cases there was close agreement between estimates, for
instance NEE at Loobos in 2000 (Fig. 6), but in other, such as Loobos
in 2001, there was disagreement.

3.9. Stocks

The analyses and predictions of foliar C matched the seasonal
cycles and magnitudes of the truth from the synthetic studies
adequately (Fig. 7). Predictions of year 3 foliar C in the eddy
Table 10
Mean size of 90% confidence interval on annual NEE for three years. Assessments

were made with outputs from the nine algorithms, and compared for different years

and datasets. The outputs for the first two years were analyses, based on model-

data fusion. The output for the final year was generated from model predictions

using estimated parameters and meteorological forcing, and no data. Units are

gC m�2 year�1.

Dataset Year 1 Year 2 Year 3

DE-EC 181.0 96.6 186.2

EV-EC 119.3 92.6 169.4

DE-SYN 139.3 83.8 148.9

EV-SYN 95.4 58.1 117.9



Fig. 5. A comparison between the summary success rate of annual estimates of GPP (left), Re (centre) and NEE (right) for each algorithm plotted against the mean size of the

90% confidence interval used in the tests. The tests were for DE-SYN and EV-SYN, the synthetic datasets. Success was judged on whether each ‘‘true’’ annual flux was within

the 90% confidence interval of the estimate. There were 6 tests (3 years � 2 datasets) for each flux. On the right panel the results for E1 and M1 were very similar. All panels

have the same scale.
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covariance datasets had a mean RMSE among algorithms of
11 gC m�2 for DE and 22 gC m�2 for EV. However, assessments of
confidence intervals were generally poor; most algorithms had
90% CI either too broad or too narrow (Table 9).
Fig. 6. Annual analyses of NEE, GPP and Re for 2000, 2001 and prognoses for 2002 gener

algorithm for NEE and for eight algorithms for GPP and Re, with 90% confidence intervals

hourly NEE data (Desai et al., 2008).
For the synthetic data, the algorithms reproduced the seasonal
cycles in fine root biomass, but the magnitude of the cycles and the
mean biomass varied among the algorithms by �50% (see
Appendix A). This result reflected the choice of initial conditions,
ated with the EV-EC dataset from Loobos, Netherlands. Results are shown for each

indicated. The dashed lines show the best estimates from gap-filling routines using



Fig. 7. Retrieved estimates of foliar C stocks over three years for the EV-EC

deciduous site with observations of NEE fluxes and LAI assimilated. The upper panel

shows best-fit or mean for Cf, with observations marked, and the lower panel shows

the width of the 90% confidence interval.
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or method of assessment, by the users. We found similar patterns
in litter and labile C pools (see Appendix A).

There were some important differences in the analyses and
predictions of the slow turnover C pools in all datasets. Csom in
most analyses showed slight increases or decreases over time, but
some algorithms showed stocks doubling over three years (M4 and
M5, see Appendix A). Such doublings were unrealistic outcomes,
but in these cases the algorithms were able to make these changes
consistent with the flux observations. For Cw most algorithms
suggest a small increase in C stocks over time, but the algorithms
with increasing Csom (M4 and M5) matched this with decreases in
Cw of similar magnitude.

4. Discussion

There have been previous attempts to parameterise C budget
models using time series of C fluxes (Braswell et al., 2005; Knorr
and Kattge, 2005; Wang et al., 2007). These studies have tended to
focus on calibrating physiological parameters, related to photo-
synthetic and respiration rates, rather than parameters related to
allocation and turnover of C pools. The calibration of parameters
interacting on a range of timescales and links to data over several
years is thus an important and novel component of REFLEX. The
feedbacks between fluxes and stocks (e.g. photosynthesis and
foliar C), and between soil organic matter and temperature, are
particularly important determinants of NEE in the DALEC model
that are investigated in REFLEX.

4.1. Parameter estimation and constraint

We expected that parameters linked to fast-response processes
that mostly determine net ecosystem exchange of CO2 (NEE) would
be well estimated (d3 metric) and well constrained (d2 metric),
while parameters for processes indirectly related to NEE would be
poorly characterised. The parameters directly related to NEE are
those related to GPP and autotrophic respiration (Fg, Fnf, Tf, Pr) and
to turnover of litter and SOM (Tl, Ts, Et). Parameters associated with
dynamics of wood and fine roots are indirectly associated with NEE
(i.e. only affect it through impacts on other vegetation pools).
Phenology parameters will be important in the deciduous case, but
largely at the spring and autumn shifts.
Our analyses largely supported our expectation. The NPP:GPP
ratio (Fg), and the turnover of litter (Tl) and foliage (Tf) were well
estimated in SYN cases according to d3. These parameters are
closely associated with foliage mass and/or gaseous exchanges of
C, as they control magnitudes of autotrophic respiration and LAI
dynamics. The turnover rate of SOM (Ts), a large slow turnover
pool, was well estimated by most algorithms (Table 6, Table 7).
Most algorithms were able to estimate the turnover of Tl and Ts and
thus predict Rh from the NEE data, i.e. separate the two fluxes Rh1

and Rh2 (Fig. 1). We suggest this success was due to the relatively
large seasonal variation in the litter pool size compared to SOM,
and the provision of SOM initial condition data, allowing the two
signals to be retrieved separately. Parameters associated with the
turnover of wood (Tw) and allocation to roots (Fnrr) were poorly
estimated, and sometimes biased.

The phenology parameters for the deciduous model (p12–17)
were reasonably estimated. While phenology provides a clear
signal in the NEE observations (Fig. 4), there was limited
information content on such discrete (i.e. on–off) processes in
just two years of data. Continuous processes (i.e. operating every
day), such as the temperature response of heterotrophic respira-
tion (Et), could make use of all available data and were well
constrained. The poor estimate of parameter Td, which controls the
decomposition of litter to SOM, was likely due to the small relative
size of this flux, the large magnitude differences in pool sizes of
litter and SOM, and the independent pathways of respiration from
both these pools. The decomposition flux could not thus be well
estimated by NEE data alone.

The inability of the data to strongly constrain the confidence
intervals on the Fg parameter, even though the mean estimates
were good, was an unexpected result, given that NEE is sensitive to
this parameter. The poor constraint (d2 metric) is likely connected
to the broad confidence intervals observed for the allocation
parameters of NPP to foliage (Fnf) and roots (Fnrr). The ultimate
cause of the poor constraint on NPP and foliage/root allocation is
likely connected to the weak constraint on dynamics of wood and
fine root C stocks. It seems that a range of different Fg, Fnf and Fnrr

parameters within the model were able to produce NEE predictions
reasonably consistent with observations, by varying the C content
in the wood and root pools (i.e. equifinality).

We expected that there would be a weaker constraint on
parameters with strong correlations. But there was no strong
agreement among algorithms on which parameters were
correlated. For the few correlations that were in common
among algorithms, there was no evidence that the correlated
parameters were less well determined, or biased. For correlated
parameters, we found that in some case both were well
determined, in some cases neither, and in other cases one
parameter was well constrained. We found similar results using
the synthetic and observed data. The minor differences in
correlation patterns between EC and SYN datasets were to be
expected, as correlations are largely a function of the model
structure. However, with the EC datasets we expected to find
evidence of more divergence among algorithms and more
correlation and covariance due to model error. But there was
no evidence of such, perhaps because of sparsity of observations
and/or large uncertainties in the data.

4.2. Flux and stock estimation

There was weak agreement among algorithms in estimations of
90% CI on NEE and its component fluxes, for all datasets. The
differences in CI size were closely related to differences among
algorithms in parameter confidence intervals. There were con-
siderable differences in assessments among similar algorithms
(e.g. Metropolis), suggesting that the subjective choices of



A. Fox et al. / Agricultural and Forest Meteorology 149 (2009) 1597–1615 1609
convergence tests versus statistical tests, priors for the parameters,
and likelihood function within the method were important
determinants of CI. None of the algorithms consistently included
within the 90% confidence interval of the best-fit NEE �90% of the
synthetic true daily NEE values, or observed daily NEE data from
year 3, (Tables 8 and 9). All algorithms at some point over- or
underestimated the confidence interval. For annual assessments of
NEE, GPP and Re, there was more success, with some algorithms
successful locating the true value from synthetic experiments
within relatively narrow 90% confidence intervals (Fig. 5).

Assimilation results for annual flux predictions were in overall
agreement with previous estimates from gap-filling studies on
half-hourly data (Desai et al., 2008). However, in a number of cases
the mean 90% CI did not include the gap-filled value (Fig. 6), for
instance NEE in 2001 for Loobos. Some differences were to be
expected, because the REFLEX database used only a subset of the
measured data (when > 90% of half-hourly periods were
measured in a day), and the assimilation was based on daily
sums rather than half-hourly measurements. The general agree-
ment in the partitioning of NEE into GPP and Re using daily NEE
data by REFLEX and half-hourly data by Desai et al. (2008) is
notable. Respiration data can be easily extracted from hourly
exchange data, but partitioning using daily data requires an
effective GPP model, and sound predictions of foliar C. The
partitioning result suggests that the DALEC GPP and phenology
sub-models have worked reasonably at the FLUXNET sites. These
results indicate that daily data are effective for model calibration,
and that hourly resolution is not necessarily an advantage in
generating predictions of annual C exchanges. We acknowledge
that finer scale temporal data could provide extra constraint and
perhaps reduce uncertainty, and this possibility needs further
investigation (Sacks et al., 2006).

4.3. Model error

The magnitude of model error is difficult to calculate and rarely
quoted. Because of the design of REFLEX, using both synthetic and
observed data, we can produce a model error estimate by
computing how much confidence intervals expand when using
an uncertain model (in the case EC observations) versus a certain
model (for SYN data). A comparison of confidence interval size on
annual NEE estimates generated from synthetic and observed data
revealed a common pattern, with larger CI for EC datasets (Table
10). Based on the comparison between CI on SYN and EC datasets,
we conclude that the impact of model error was to increase the size
of confidence intervals on annual NEE estimates by �31%.

4.4. Prediction error

Prediction error, determined by forcing the model for 12
months beyond the assimilation period, was more complex to
determine, because confidence intervals varied strongly between
years 1 and 2 of the analysis. The only factor in common to all
datasets was the lack of priors for initial conditions of Cf, Clit and Cr.
Thus, it is likely that erroneous initial conditions and/or large
uncertainties on the initial values caused larger CI in year 1. The
initial pools were often out of equilibrium with parameters, and so
changed relatively quickly at first. By year two, parameter and
state equilibria for these fast C pools reduced uncertainty. For
predictions in year 3, lacking constraint of observations, uncer-
tainty increased. CI on predictions (year 3) were > twice those for
year 2 analyses. For the SYN experiments, the year 3 predictions
among algorithms were similarly successful to years 1 and 2—that
is, a similar fraction of 90% confidence intervals on annual flux
estimates encompassed the truth. This result suggests that the
quantification of increasing CI was reasonable.
4.5. Algorithm assessment

We examined the different algorithms, to determine if there were
distinct winners or losers. All approaches produced broadly similar
parameter retrievals (Fig. 2) for both synthetic and observed
datasets (Tables 6 and 7). All approaches generated effective best
estimates and predictions of daily NEE, as shown by the small
RMSEs. But the focus of this study was also on the generation of
sound confidence intervals to supplement these estimates. At the
daily time-step the results were equivocal, with a tendency for
algorithms to be over- or under-confident (Table 8). But at the
annual timescale, perhaps the most relevant for C studies, we found
that most of the algorithms’ estimates of NEE encompassed the truth
within 90% CI. A complementary test was to check the mean size of
confidence intervals, to identify and weed out those cases where a
successful test was obtained by using very broad CI. Thus, the test of
annual NEE, GPP and Re retrievals (year 1 and 2) and predictions
(year 3) against the known truth from the synthetic experiments
(Fig. 5) is perhaps the most useful judgement on the individual
algorithms. According to this test, Metropolis methods, Kalman
filters and genetic algorithms were all capable of correctly
identifying a large proportion of true fluxes with relatively small
confidence intervals. Thus all approaches were valid, but some
implementations were more effective in terms of this test on
confidence intervals than others (see Appendix A for more
information on algorithms). The sequential updating of the Kalman
filters, allowing shifts in states through the model run unconnected
to parameters, may be connected to the success of such methods (E1,
E2, U1) in generating effective, but narrow confidence intervals.

Some algorithms (M4 and M5) had problems with large changes
to Cw and Csom pools, which could be made consistent with the flux
data, but are not ecologically sound in an undisturbed ecosystem.
This problem seems to be partly related to a steady state assumption,
with stocks first confined to an equilibrium, which likely leads to an
erroneous initial system state, potential biases in parameters and
inflation of their confidence intervals, as shown recently in a specific
study by Carvalhais et al. (2008). These symptoms are, for example,
also seen in the approach M4, where a spin-up was performed.
Hence, a way to estimate the initial state of the system without an
ad-hoc steady state assumption is crucial to successful MDF and
should be explored further. A constraint on the annual changes in
these pools based on repeated inventories would help solve this
problem. Stem inventories are likely to be easier to undertake with
quantifiable error than those on SOM, and so should be the focus for
future studies. Nevertheless, if longer time scale are to be addressed
there is a need to imposed constraints from soil carbon data, e.g. via
chronosequences or profile data. Some algorithms did not explicitly
include searching for initial conditions on Cf, Clab and Clit, and this
caused some problems for e.g. E2. All algorithms need to assess their
estimates of uncertainties and develop new approaches for
uncertainty estimates that are consistent with the observations.

This experiment has demonstrated the value of using synthetic
datasets in understanding data assimilation problems. It is clear
that even with a perfect model, existing model-data fusion
approaches find it difficult to analyse parameters using synthetic,
noisy and sparse datasets. The information content of data that can
be extracted by MDF depends on data quality and coverage.
Further synthetic studies will illuminate the relationship between
data availability and parameter constraint. It is clear that there is
little consensus on how to generate confidence intervals, with very
broad ranges among algorithms. Tests using confidence intervals
provide a useful first look at assessing the uncertainties quantified
by the various algorithms, although representing continuous
probability distributions with a confidence interval suffers from
using an arbitrary cutoff criteria. Algorithms that are not well
constrained by the data, and thus have wide CI’s, will be more
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likely to contain the true value but this suggests they are less able
to make use of all the information in the data.

5. Conclusions

A range of model-data fusion algorithms exist that can generate
useful estimates of parameter probability density functions and
state estimates for C models using daily net ecosystem exchange
data, derived either from observations or synthetically. While there
was less agreement among algorithms on the size of confidence
intervals on parameter and state estimates, some algorithms were
able to make effective estimates of annual fluxes within relatively
small CI, when compared to detailed gap-filled estimates or the
synthetic ‘truth’. Overall, algorithms generated narrower confidence
intervals in analyses using synthetic data compared to observed
data. Likewise, confidence intervals were larger by 88% for forecast
periods than during data-fusion periods. These results suggest that
some algorithms were generally able to make a reasonable
quantification of error propagation in prediction periods, and of
the likely size of model error, but that differences in estimated
confidence intervals suggests further improvements are required.
Further studies should explore the importance of assumptions about
parameter priors (Gaussian or uniform), and the handling of
unknown initial conditions. Exploring the growth in CI over forecast
periods of multiple years also needs to be explored in a further study.
Seasonal data on the variation in slow large C pools would be a useful
addition to model-data fusion studies, even with large confidence
intervals. Such data can help constrain the parameters poorly served
by eddy covariance data, which are those related to allocation of
photosynthate to respiration and plant pools, and turnover of wood
and roots.
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Appendix A

A.1. Details of algorithms

E1: Combined Metropolis–Ensemble Kalman Filter (two–stage

approach). Stage 1. Parameter estimation. Parameters were initially

estimated using a simple Metropolis MCMC-type approach. (e.g. (Knorr

and Kattge, 2005; Mosegaard and Tarantola, 1995)). Initial prior

distributions were assumed to be uniform and encompass the entire

possible suggested range and so a single stage accept/reject criterion
was used based on comparison of model output with data alone. Initial

values for Cr, Clit and Clab were estimated in the same manner as

parameters, initial values for Cf were based on first available

observation (EV case) or set to zero (DE case). The model was initialized

from a random location, and step size was constant and determined as

0.001 of log-transformed parameter range. This was determined

through ‘tuning’ initial runs to ensure an acceptance probability of

between 0.2 and 0.8 at each step. The number of steps required to

sufficiently sample the parameter space was assessed using the Gelman

criteria (Gelman, 1995) to test convergence between chains.

E1: Stage 2. State estimation. Eight thousand parameter sets were

randomly sampled from the accepted parameters from Stage 1. These

were then used in an 8000 member Ensemble Kalman Filter (EnKF,

Evensen, 1994; Williams et al., 2005). A unique parameter set was

assigned to each ensemble member with the intention this would

cause divergence between ensemble members representing model

error and cause a growth in state uncertainty equivalent to that

inherent from parameter uncertainty alone. This was done instead of

adding a stochastic forcing term at each time-step. This is possibly

correct in the SYN cases when model ‘structural’ error is known to be

zero, but will probably underestimate model error in the EC cases and

overly restrict growth in state uncertainty. Nonetheless, assimilation

of observations did alter the state variables in the resulting analysis

and reduce uncertainties in state estimates even though these same

observation data had already been used to generate the parameter

sets in Stage 1 so offered little additional information to the EnKF.

E2: Ensemble Kalman Filter. This method was set up for joint

estimation of states and parameters, so parameters were included

within the state vector for assimilation. Model parameter errors were

set within bounds—small enough to avoid tracking daily noise in

observations, and large enough to shift over weekly-seasonal

timescales in response to process signals. Errors on model states

were set smaller than for parameters, so that assimilation was

focused on updating parameters rather than states. Initial values for

all parameters and initial conditions for Cf, Clab and Cr were estimated.

After an initial assimilation of observations, these initial parameter

estimates were updated with the final estimates from the assimila-

tion. We assumed that Cf, Clab and Cr would be in approximate steady

state over annual cycles, and adjusted initial values accordingly. A

further EnKF assimilation was then applied, using these updated

initial parameters and initial conditions, to generate final analyses.

U1: Combined Metropolis–Unscented Kalman Filter. The UKF was

used to provide state estimates for each of the experiments. The UKF

(Julier and Uhlmann, 2004) is a nonlinear version of the traditional

linear Kalman filter (Kalman, 1960), that uses a deterministic sampling

of so-called sigma points in order to capture the mean and covariance of

the state. Similar to other Kalman type filters it employs a two-step

‘predictor–corrector’ scheme where model predictions are corrected by

measurements as they arrive sequentially in time. At time periods

where measurements are missing, only the prediction step is used. To

employ the UKF, the general nonlinear state space model was assumed,

with the variants of the model taking the form of the state evolution

equations. A linear measurement model was used in all runs. Both the

state and measurement equations assume zero mean random noise

processes with associated full-dimensional covariance matrices (Gove

and Hollinger, 2006). The later were estimated from the information

provided. The parameter estimates used in the filter runs were arrived

at via simulated annealing method M3. Parameters for the unscented

transformation were set toa = 1,b = 2 andk = 1 for all experiments (see

Gove and Hollinger, 2006 for an explanation).
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G1: Genetic algorithm: The implementation was from Haupt and

Haupt (2004). The population size was 100, and was run for 1000

iterations (generations). Initial stores Cr, Clit, Cf and Clab were

estimated by the GA as additional parameters. To estimate

uncertainties, the roughly 1600 (unique) parameter sets with cost

function values closest to the final best cost function value were

saved, and used to estimate the covariance matrix and 90% CI.

M1: Metropolis. This method sought to make as few approxima-

tions as possible to Bayes Theorem, choosing the simplest algorithm to

generate a representative sample from the posterior. We chose the beta

distribution for our prior. The Metropolis algorithm (Metropolis et al.

1953) generates a chain that sequentially ‘‘walks through parameter

space’’ in such a way that the chain of visited points is the sought-after

sample from the posterior. Each new point in the chain is found by

randomly generating a multivariate normal step away from the current

vector. In this case a simple diagonal variance matrix defined this

multivariate normal ‘‘proposal distribution’’. Whether a proposed

candidate vector was accepted or not depended on the Metropolis ratio,

which is the ratio of two products: likelihood times prior for the

candidate and likelihood times prior for the current point. If the

Metropolis ratio was larger than 1 (i.e. the candidate point has a higher

posterior probability then the current point), it was always accepted. If

the Metropolis ratio was less than 1 (i.e. the candidate was ‘‘less

probable’’ than the current vector), the candidate could still be accepted

but only with probability equal to the Metropolis ratio. The chain was

stopped when it ‘‘converged’’, i.e. it had explored the parameter space

adequately. Convergence was confirmed visually using the trace plots

of the different parameters, i.e. plots that show how the chain moves

through parameter space for each individual parameter. If one or more

of the trace plots was still showing drift towards unexplored parts or

parameter space, the chain was deemed not to have converged.

M2: Combined genetic algorithm–Metropolis (2 stage process). A

combined optimisation approach estimated model parameters and

state variables. A genetic algorithm, Stochastic Evolutionary Ranking

Strategy (SRES) was used to find the global optimum (Runarrsson and

Yao, 2000). Markov chain monte carlo (MCMC) using the Metropolis–

Hastings algorithm was then used to explore the parameter space

around the optimum toestimate the full joint distribution of parameters

and to estimate predictive uncertainty. Two chains were run for each

experiment; convergence was determined by visually comparing the

parameter PDFs from both chains. The ranges given for p1-17 were used

as uniform distributions; no additional information was used. The initial

values of pools Cr, Clit and Clab were also estimated as model parameters,

using the prior range 20–200 gC m�2 as recommended. All observations

areassumedtodrawn fromindependentdistributions. BothNEE andLAI

errors were assumed normally distributed.

M3: Metropolis. Optimisation of parameters and initial values of C

pools took place in three stages. First, the parameter and initial state

space was randomly explored for 50,000 iterations, at which point the

parameter set and initial conditions with the lowest cost function was

used as the starting point for the Metropolis algorithm. Second, the

Metropolis algorithm was implemented to ensure progressive down-

slope movement while at the same time avoiding local minima. The cost

function was a weighted-sum-of-squares of both NEE and LAI

deviations. 200,000 steps were taken in this manner. Third, reverting

to the best parameter set obtained, the parameter space was explored

again until 1000 parameter sets have been accepted as ‘‘almost as good

as’’ the optimal parameter set, using ax2 test to determine the threshold

contour (90% confidence interval) (assuming n � 1 degrees of freedom

for LAI and n � p � 1 degrees of freedom for NEE. These parameter sets
were used to define the uncertainty estimates on both parameters and

model predictions.

M4: Metropolis. The algorithm adopted a global search method

with an uniform walk in the model parameter space. The method is

based on a Bayesian approach where the comparison between model

output and data is used to update our prior knowledge of the

parameter distribution. The prior distributions were considered to be

uniform. The Metropolis rules prevented the algorithm from being

trapped in local minima, allowing for changes in the searching

direction. Spin-up was used to initialize the C pools (Cr, Clit and Clab);

we sampled the parameters and we ran the model replicating the

meteorological data until the total difference between one year and

the other was less than 1 g of C. The other C pools were initialized as

from the experiment description.

M5. Metropolis. The SCEM-UA algorithm (Vrugt et al., 2003) is a

modified version of the original SCE-UA global optimisation algorithm

(Duan et al., 1992). The algorithm is Bayesian in nature and operates by

merging the strengths of the Metropolis algorithm, controlled random

search, competitive evolution, and complex shuffling to continuously

update the proposal distribution and evolve the sampler to the posterior

target distribution. The SCEM-UA algorithm uses the Metropolis–

Hastings (Metropolis et al., 1953) search strategy to generate a sequence

of parameter sets (u1, u2, . . ., un) that adapts to the target posterior

distribution. It starts with an initial population of points (parameter

sets) randomly distributed throughout the feasible parameter space

defined by the prior parameter distributions. The population is

partitioned into q complexes, and in each complex k (k = 1, 2, . . ., q) a

parallel sequence is launched from the point that exhibits the highest

posterior density. A new candidatepoint in each sequence k is generated

using a multivariate normal distribution either centred around the

current draw of the sequence k, or the mean of the points in complex k,

augmented with the covariance structure inducedbetweenthe points in

complex k. The Metropolis-annealing criterion is used to test whether

the candidate point should be added to the current sequence. Subse-

quently the new candidate point randomly replaces an existing member

of the complex. Finally, after a certain number of iterations new comple-

xes are formed through a process of shuffling the old complexes. The

objective function used inthis studyisa combination ofthe modelerrors

(expressed as SSE, Sum of Squared Errors) of describing the CO2 fluxes

and the Leaf Area Index, weighted by the error variance of each variable.

A.2. Detailed model outputs
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Retrieved estimates of soil organic matter/coarse woody debris C

stocks over three years for the DE-EC deciduous site with observa-

tions of NEE fluxes and LAI assimilated. The upper panel shows best-

fit or mean for Csom, and the lower panel shows the width of the 90%

confidence interval. Algorithms are indicated by the codes in the right

hand panels.

Retrieved estimates of woody C stocks over three years for

the DE-EC deciduous site with observations of NEE fluxes and

LAI assimilated. The upper panel shows best-fit or mean for Cw,

and the lower panel shows the width of the 90% confidence

interval. Algorithms are indicated by the codes in the right hand

panels.

Retrieved estimates of fine root C stocks over three years for the

DE-SYN deciduous site with synthetic NEE fluxes and LAI assimilated.

The upper panel shows best-fit or mean for Cr, and the lower panel
shows the width of the 90% confidence interval. The true value of Cr is

indicated in the upper panel also. Algorithms are indicated by the

codes in the right hand panels.

Retrieved estimates of litter C stocks over three years for the

EV-SYN evergreen site with synthetic NEE fluxes and LAI

assimilated. The upper panel shows best-fit or mean for Clit,

and the lower panel shows the width of the 90% confidence

interval. The true value of Clit is indicated in the upper panel

also. Algorithms are indicated by the codes in the right hand

panels.

Retrieved estimates of labile C stocks over three years for

the DE-EC deciduous site with observed NEE fluxes and LAI

assimilated. The upper panel shows best-fit or mean for Clab,

and the lower panel shows the width of the 90% confidence

interval. Algorithms are indicated by the codes in the right hand

panels.
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Annual analyses of NEE, GPP and Re for 2000, 2001 and prognoses for 2002 generated with the DE-EC dataset from Hesse, France. Results
are shown for each algorithm for NEE and for eight algorithms for GPP and Re, with 90% confidence intervals indicated. The dashed lines
show the best estimates from gap-filling routines using hourly NEE data, while the dotted lines show interquartile range among the
estimates from the array of gap-filling routines for 2001 and 2002 (Desai et al., 2008).
Parameter estimation for deciduous FLUXNET (DE-EC) data. The panels shows each of the algorithms’ best estimate of each parameter,
and the magnitude of each 90% confidence intervals. The upper and lower bounds of each parameter, as provided to the experimenters, is
indicated by the range of each x-axis. x-Axes are log scaled for turnover rates (all parameters beginning T). For an explanation of parameter
symbols see Table 5.
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Parameter estimation for evergreen FLUXNET (EV-EC) data. The panels shows each of the algorithms’ best estimate of each parameter, and
the magnitude of each 90% confidence intervals. The upper and lower bounds of each parameter, as provided to the experimenters, is
indicated by the range of each x-axis. x-Axes are log scaled for turnover rates (all parameters beginning T). For an explanation of parameter
symbols see Table 5.

Parameter estimation for evergreen synthetic (EV-SYN) data. The panels shows each of the algorithms’ best estimate of each parameter,
and the magnitude of each 90% confidence intervals. The ‘true’ value of the parameter used in generating the synthetic data is indicated by
the d vertical line. The upper and lower bounds of each parameter, as provided to the experimenters, is indicated by the range of each x-axis.
x-Axes are log scaled for turnover rates (all parameters beginning T). For an explanation of parameter symbols see Table 5.
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